美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代寫COMP34212、代做Python/c++程序設(shè)計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區(qū)
    昆明西山國家級風景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    国语对白在线播放| 久久午夜福利电影| 黄色香蕉视频在线观看| 中文字幕avav| 久久久久久成人网| 性久久久久久久久久久| 秋霞欧美一区二区三区视频免费| 亚洲欧美日韩偷拍| 韩国三级丰满少妇高潮| 欧美成人短视频| 欧美xxxxx精品| 中文字幕永久免费| 成年人午夜剧场| 日本精品人妻无码77777| 微拍福利一区二区| 亚洲色图日韩精品| caoporn91| 色悠悠在线视频| 日本一区二区在线观看视频| 在线观看xxx| yy1111111| 国产综合精品在线| 疯狂试爱三2浴室激情视频| 少妇被躁爽到高潮无码文| 日韩视频中文字幕在线观看| 亚洲成人激情小说| 99久久免费看精品国产一区| jizz中文字幕| 91精品国产高清一区二区三蜜臀| 日本国产在线视频| 五月天精品在线| 丰满人妻一区二区三区大胸| 精品国产av色一区二区深夜久久| 国产精品无码久久久久久| 午夜激情福利电影| 免费人成视频在线播放| 欧美 变态 另类 人妖| 999久久久国产| 95视频在线观看| 亚洲a∨无码无在线观看| 黄页网站在线看| 三年中国中文观看免费播放| 中文在线观看免费视频| 少妇愉情理伦三级| 波多野结衣影院| 久久福利免费视频| 人妻精品久久久久中文字幕 | 国产精品理论在线| 一级全黄裸体片| youjizz亚洲女人| av鲁丝一区鲁丝二区鲁丝三区| 精品在线观看一区| 中文字幕狠狠干| 2025中文字幕| 登山的目的在线| 无码人妻aⅴ一区二区三区69岛| 香蕉视频在线观看黄| 黄视频网站免费看| 神马久久精品综合| 黄色录像免费观看| 人人干在线观看| 亚洲欧洲综合网| 成人18视频免费69| 欧美性生交大片| 91香蕉视频网| 裸体武打性艳史| 一区二区在线观看免费视频| 欧美三级黄色大片| 无码黑人精品一区二区| 毛片视频免费播放| 手机av在线看| 五月天av网站| 四虎成人免费视频| 最新中文字幕视频| 亚洲图片另类小说| 国产jizz18女人高潮| 日本高清不卡免费| 日本一级大毛片a一| 无码人妻一区二区三区精品视频 | 国产成人精品视频免费| fc2ppv在线播放| 日本黄色小说视频| 男男一级淫片免费播放| 亚洲精品乱码久久| 精品无码在线观看| 中文字幕第10页| 中国极品少妇videossexhd| 成年人在线观看av| 亚洲精品自拍视频在线观看| 制服丝袜av在线| 亚洲国产日韩一区无码精品久久久| 久久久久亚洲AV成人无在| 波多野结衣亚洲一区二区| 丰满岳乱妇一区二区| 少妇太紧太爽又黄又硬又爽小说 | 极品尤物一区二区| 国产高潮视频在线观看| a级在线免费观看| 人妻体内射精一区二区| 男人天堂资源网| 深田咏美中文字幕| 一级免费黄色录像| av在线网站观看| av漫画在线观看| 日韩高清dvd碟片| 亚洲一级片在线播放| 极品白嫩少妇无套内谢| 成年人二级毛片| 全黄一级裸体片| 丰满岳乱妇一区二区 | 男女羞羞免费视频| x88av在线| 熟女少妇一区二区三区| 国产大片免费看| 国产成人福利在线| 精品一区二区视频在线观看| 国产大片免费看| 午夜成人亚洲理伦片在线观看| 在线免费观看日韩av| 秘密基地免费观看完整版中文| 国产黄色大片免费看| 大地资源二中文在线影视观看| 91视频免费入口| 欧美色视频一区二区三区在线观看| 香蕉网在线播放| www日本在线观看| 日本一二三区在线观看| 成人黄色短视频| 国产精品免费人成网站酒店| 在线观看亚洲网站| 日韩高清dvd碟片| 9.1人成人免费视频网站| 日本成人在线免费观看| 亚洲成人福利视频| 欧洲成人午夜精品无码区久久| 超级砰砰砰97免费观看最新一期 | 少妇极品熟妇人妻无码| 日韩视频中文字幕在线观看| 在线免费日韩av| 日本少妇xxxx软件| 屁屁影院国产第一页| 日韩精品视频一区二区| wwwwxxxx国产| 伊人久久久久久久久久久久久久| 亚洲一级二级片| 伊人av在线播放| 中文字幕免费视频| 亚洲色偷偷综合亚洲av伊人| 日本人妻一区二区三区| 一级黄色性视频| ass极品水嫩小美女ass| 精品伦一区二区三区| 免费成人深夜夜行p站| 亚洲综合图片一区| aaa黄色大片| 日日操免费视频| 在线播放第一页| 日本成人免费在线观看| 亚洲精品久久一区二区三区777| 成人午夜剧场视频网站| 国产美女高潮视频| 少妇一级淫免费观看| 国产老头老太做爰视频| 亚洲av成人片色在线观看高潮| 91社区视频在线观看| 欧美一级片黄色| 顶臀精品视频www| 俄罗斯毛片基地| 亚洲AV无码国产精品| 亚洲色图综合区| 午夜时刻免费入口| www.色多多| 日本成人在线免费| 999精品在线视频| 极品尤物一区二区| 精品无码在线观看| 你懂的在线观看网站| 亚洲熟女www一区二区三区| 精品亚洲aⅴ无码一区二区三区| 少妇极品熟妇人妻无码| 婷婷丁香综合网| 性色av蜜臀av色欲av| 亚洲欧美日韩偷拍| 男女性杂交内射妇女bbwxz| 极品魔鬼身材女神啪啪精品| 久久久久久成人网| 欧美激情视频二区| 国产一区在线观看免费| 欧美福利第一页| 亚洲天堂精品一区| 欧美日韩国产一二三区| 欧美性生交大片| 日韩亚洲欧美中文字幕| 国精产品一区一区| 免费黄色国产视频| 制服下的诱惑暮生| 69xxx免费| 99国产精品免费| 老熟妇高潮一区二区三区| 五月天婷婷色综合|