美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

JC3509編程代做、代寫Python程序設計

時間:2024-03-31  來源:  作者: 我要糾錯



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:CHC5223代寫、Java/c++編程設計代做
  • 下一篇:代寫CSci 4061、c/c++,Java程序代做
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    老司机精品免费视频| av黄色在线免费观看| 亚洲第一综合网| 精产国品一区二区三区| 无码人妻aⅴ一区二区三区| 国产亚洲精品久久久久久豆腐| 国产精品久久久久久亚洲av| 国精品无码一区二区三区| 99自拍偷拍视频| av永久免费观看| 欧美熟妇激情一区二区三区| 日本丰满少妇裸体自慰| 色天使在线视频| 精品人妻无码一区二区三区| 国产大学生视频| 中文字幕狠狠干| 日本丰满少妇裸体自慰| 日本aaa视频| 人人爽人人爽人人片| 殴美一级黄色片| 一区二区在线观看免费视频| 4438x全国最大成人| 逼特逼视频在线观看| 黄色在线免费播放| 久久久久久九九九九九| а天堂中文在线资源| 国产精品国产高清国产| 日本在线不卡一区二区| 干b视频在线观看| 亚洲综合视频网站| 大桥未久恸哭の女教师| 国产亚洲精品熟女国产成人| 婷婷激情四射网| 久久久久成人精品无码中文字幕| 欧美图片第一页| 黄色录像二级片| 亚洲第一香蕉网| 日本黄色www| 久久久久久久毛片| 亚洲啪av永久无码精品放毛片| 色呦呦一区二区| 精品无码一区二区三区蜜臀| 风间由美一二三区av片| 国产大学生自拍| 免费视频91蜜桃| 五月天丁香社区| 久久无码人妻一区二区三区| 亚洲自拍偷拍精品| 午夜精品一区二区三级视频| 欧美激情aaa| 国产ts在线观看| 女人18毛片毛片毛片毛片区二| 亚洲av永久无码精品| avtt中文字幕| 成人黄色短视频| 99久久99久久精品免费看小说.| 国产乱淫av片| 中文字幕一二三区| 永久免费未视频| 摸摸摸bbb毛毛毛片| 免费观看av网站| 国产视频久久久久久| 亚洲成人福利视频| 丝袜美腿小色网| 男女羞羞免费视频| 日本黄色一级网站| 亚洲av无码久久精品色欲| 日本乱子伦xxxx| 少妇无套高潮一二三区| 我和岳m愉情xxxⅹ视频| 97香蕉碰碰人妻国产欧美| 色哟哟网站在线观看| 国产ts在线观看| 欧美bbbbb性bbbbb视频| 疯狂揉花蒂控制高潮h| 国产精品扒开腿做爽爽爽a片唱戏 亚洲av成人精品一区二区三区 | 麻豆传媒在线看| 欧美午夜精品一区二区| 1024手机在线视频| 一级黄色电影片| 亚洲综合色一区| 国产第一页精品| 亚洲一区电影在线观看| ass极品水嫩小美女ass| 人妻av一区二区三区| 大黑人交xxx极品hd| 久久久久亚洲av无码a片| 少妇愉情理伦三级| 成人免费视频国产免费观看| 手机免费看av片| 亚洲黄色小说视频| 看黄色录像一级片| 野战少妇38p| 熟女少妇内射日韩亚洲| 一级黄色录像视频| 日本japanese极品少妇| 国产探花视频在线| 成年人小视频在线观看| 欧美成人另类视频| 美女又黄又免费的视频| 中文字幕高清视频| 国产精品九九九九九九| 日批在线观看视频| 人与动物性xxxx| www.超碰97| 日本老熟俱乐部h0930| 大又大又粗又硬又爽少妇毛片| 中文字幕伦理片| 欧美做受高潮中文字幕 | 人妻一区二区视频| 老女人性生活视频| 懂色av蜜桃av| 亚洲熟女乱综合一区二区三区 | 国产探花视频在线播放| 在线播放av网址| 三级av在线免费观看| 国产成人福利在线| 性久久久久久久久久| 亚洲国产美女视频| 99久久精品久久亚洲精品| 男人操女人动态图| 亚洲の无码国产の无码步美| 国产日产精品一区二区三区的介绍| 大地资源二中文在线影视观看| 在线看的片片片免费| 国产激情在线免费观看| 国产又粗又猛又色| 亚洲精品中文字幕在线播放| 亚洲AV无码久久精品国产一区| 波多野结衣家庭教师在线观看 | 97香蕉碰碰人妻国产欧美| 久久无码人妻一区二区三区| 国产3级在线观看| 国产成人免费在线观看视频| 大胸美女被爆操| 老司机福利在线观看| 99国产精品无码| 国产精品久久久免费看| 日日操免费视频| 5566中文字幕| 成年人一级黄色片| 欧美黄色aaa| 国产sm在线观看| 艳妇乳肉亭妇荡乳av| 国产男男chinese网站| 国产黄色网址在线观看| 欧美人与性囗牲恔配| 天海翼在线视频| 中国特级黄色大片| 一区二区精品免费| 天天鲁一鲁摸一摸爽一爽| 一级黄色大片免费看| 日韩少妇一区二区| 亚洲AV无码成人精品区明星换面| 亚洲黄色小说视频| 日批视频在线看| 免费成人深夜天涯网站| 国产女片a归国片aa| 公侵犯人妻一区二区三区| 久久精品在线观看视频| 欧美日韩一区二区区别是什么| 伊人久久一区二区三区| 香蕉久久久久久久| 北京富婆泄欲对白| 精品一区二区三区蜜桃在线| 国产97免费视频| 欧美人妻一区二区三区| 亚洲午夜久久久久久久久| 免费一级特黄3大片视频| 不卡的一区二区| 欧美成人另类视频| 中文字幕一区三区久久女搜查官| 极品美妇后花庭翘臀娇吟小说| www国产视频| 欧美一区二区三区影院| 懂色av蜜桃av| 欧美性xxxx图片| 免费黄色三级网站| www日本在线观看| 午夜爱爱毛片xxxx视频免费看| a级片在线观看| 一出一进一爽一粗一大视频| 免费国产羞羞网站美图| 亚洲av无一区二区三区| 成人黄色a级片| 精品一区二区三区蜜桃在线| 法国伦理少妇愉情| 久久国产精品无码一级毛片| 国产又粗又猛又色| 你懂的在线观看网站| 精品人妻一区二区免费| 日批视频免费看| 精品国产乱码久久久久久鸭王1| 国产激情av在线| 亚洲欧美va天堂人熟伦| 亚洲自拍偷拍图| 欧美xxxooo| 国模大尺度视频| 好吊色视频一区二区三区| 丰满少妇一区二区三区|