美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代做Lab 2: Time Series Prediction with GP

時間:2024-03-21  來源:  作者: 我要糾錯



Evolutionary Computation 2023/2024
Lab 2: Time Series Prediction with GP
Released: February 26, 2024
Deadline: March 18, 2024
Weight: 25 %
You need to implement one program that solves Exercises 1-3 using any programming language.
In Exercise 5, you will run a set of experiments and describe the result using plots and a short
discussion.
(In the following, replace abc123 with your username.) You need to submit one zip file
with the name ec2024-lab2-abc123.zip. The zip file should contain one directory named
ec2024-lab2-abc123 containing the following files:
• the source code for your program
• a Dockerfile (see the appendix for instructions)
• a PDF file for Exercises 4 and 5
In this lab, we will do a simple form of time series prediction. We assume that we are given some
historical data, (e.g. bitcoin prices for each day over a year), and need to predict the next value in
the time series (e.g., tomorrow’s bitcoin value).
1
We formulate the problem as a regression problem. The training data consists of a set of m
input vectors X = (x
(0), . . . , x(m−1)) representing historical data, and a set of m output values
Y = (x
(0), . . . , x(m−1)), where for each 0 ≤ j ≤ m − 1, x
(j) ∈ R
n and y
(j) ∈ R. We will use genetic
programming to evolve a prediction model f : R
n → R, such that f(x
(j)
) ≈ y
(j)
.
Candidate solutions, i.e. programs, will be represented as expressions, where each expression evaluates to a value, which is considered the output of the program. When evaluating an expression,
we assume that we are given a current input vector x = (x0, . . . , xn−1) ∈ R
n. Expressions and evaluations are defined recursively. Any floating number is an expression which evaluates to the value
of the number. If e1, e2, e3, and e4 are expressions which evaluate to v1, v2, v3 and v4 respectively,
then the following are also expressions
• (add e1 e2) is addition which evaluates to v1 + v2, e.g. (add 1 2)≡ 3
• (sub e1 e2) is subtraction which evaluates to v1 − v2, e.g. (sub 2 1)≡ 1
• (mul e1 e2) is multiplication which evaluates to v1v2, e.g. (mul 2 1)≡ 2
• (div e1 e2) is division which evaluates to v1/v2 if v2 ̸= 0 and 0 otherwise, e.g., (div 4 2)≡ 2,
and (div 4 0)≡ 0,
• (pow e1 e2) is power which evaluates to v
v2
1
, e.g., (pow 2 3)≡ 8
• (sqrt e1) is the square root which evaluates to √
v1, e.g.(sqrt 4)≡ 2
• (log e1) is the logarithm base 2 which evaluates to log(v1), e.g. (log 8)≡ 3
• (exp e1) is the exponential function which evaluates to e
v1
, e.g. (exp 2)≡ e
2 ≈ 7.39
• (max e1 e2) is the maximum which evaluates to max(v1, v2), e.g., (max 1 2)≡ 2
• (ifleq e1 e2 e3 e4) is a branching statement which evaluates to v3 if v1 ≤ v2, otherwise the
expression evaluates to v4 e.g. (ifleq 1 2 3 4)≡ 3 and (ifleq 2 1 3 4)≡ 4
• (data e1) is the j-th element xj of the input, where j ≡ |⌊v1⌋| mod n.
• (diff e1 e2) is the difference xk − xℓ where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋| mod n
• (avg e1 e2) is the average 1
|k−ℓ|
Pmax(k,ℓ)−1
t=min(k,ℓ)
xt where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋|
mod n
In all cases where the mathematical value of an expression is undefined or not a real number (e.g.,

−1, 1/0 or (avg 1 1)), the expression should evaluate to 0.
We can build large expressions from the recursive definitions. For example, the expression
(add (mul 2 3) (log 4))
evaluates to
2 · 3 + log(4) = 6 + 2 = 8.
2
To evaluate the fitness of an expression e on a training data (X , Y) of size m, we use the mean
square error
f(e) = 1
m
mX−1
j=0

y
(j) − e(x
(j)
)
2
,
where e(x
(j)
) is the value of the expression e when evaluated on the input vector x
(j)
.
3
Exercise 1. (30 % of the marks)
Implement a routine to parse and evaluate expressions. You can assume that the input describes a
syntactically correct expression. Hint: Make use of a library for parsing s-expressions1
, and ensure
that you evaluate expressions exactly as specified on page 2.
Input arguments:
• -expr an expression
• -n the dimension of the input vector n
• -x the input vector
• -question the question number (always 1 in this case)
Output:
• the value of the expression
Example: In this example, we assume that your program has been compiled to an executable with
the name my lab solution.
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 1 -x "1.0"
-expr "(mul (add 1 2) (log 8))"
9.0
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 2 -x "1.0 2.0"
-expr "(max (data 0) (data 1))"
2.0
Exercise 2. (10 % of the marks) Implement a routine which computes the fitness of an expression
given a training data set.
Input arguments:
• -expr an expression
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing the training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -question the question number (always 2 in this case)
1See e.g. implementations here http://rosettacode.org/wiki/S-Expressions
4
Output:
• The fitness of the expression, given the data.
Exercise 3. (30 % of the marks)
Design a genetic programming algorithm to do time series forecasting. You can use any genetic
operators and selection mechanism you find suitable.
Input arguments:
• -lambda population size
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -time budget the number of seconds to run the algorithm
• -question the question number (always 3 in this case)
Output:
• The fittest expression found within the time budget.
Exercise 4. (10 % of the marks) Here, you should do one of the following exercises.
If you follow LH Evolutionary Computation, do the following exercise: Describe your
algorithm from Exercise 3 in the form of pseudo-code. The pseudo-code should be sufficiently detailed
to allow an exact re-implementation.
If you follow LM Evolutionary Computation (extended), do the following exercise:
Describe in 150 words or less the result in one recent research paper on the topic “symbolic regression
using genetic programming”. The paper needs to be published in 2020 or later in the proceedings of
one of the following conferences: GECCO, PPSN, CEC, or FOGA.
5
Exercise 5. (20 % of the marks)
In this final task, you should try to determine parameter settings for your algorithm which lead to
as fit expressions as possible.
Your algorithm is likely to have several parameters, such as the population size, mutation rates,
selection mechanism, and other mechanisms components, such as diversity mechanisms.
Choose parameters which you think are essential for the behaviour of your algorithm. Run a set of
experiments to determine the impact of these parameters on the solution quality. For each parameter
setting, run 100 repetitions, and plot box plots of the fittest solution found within the time budget.
6
A. Docker Howto
Follow these steps exactly to build, test, save, and submit your Docker image. Please replace abc123
in the text below with your username.
1. Install Docker CE on your machine from the following website:
https://www.docker.com/community-edition
2. Copy the PDF file from Exercises 4 and 5 all required source files, and/or bytecode to an
empty directory named ec2024-lab2-abc123 (where you replace abc123 with your username).
mkdir ec2024 - lab2 - abc123
cd ec2024 - lab2 - abc123 /
cp ../ exercise . pdf .
cp ../ abc123 . py .
3. Create a text file Dockerfile file in the same directory, following the instructions below.
# Do not change the following line . It specifies the base image which
# will be downloaded when you build your image .
FROM pklehre / ec2024 - lab2
# Add all the files you need for your submission into the Docker image ,
# e . g . source code , Java bytecode , etc . In this example , we assume your
# program is the Python code in the file abc123 . py . For simplicity , we
# copy the file to the / bin directory in the Docker image . You can add
# multiple files if needed .
ADD abc123 . py / bin
# Install all the software required to run your code . The Docker image
# is derived from the Debian Linux distribution . You therefore need to
# use the apt - get package manager to install software . You can install
# e . g . java , python , ghc or whatever you need . You can also
# compile your code if needed .
# Note that Java and Python are already installed in the base image .
# RUN apt - get update
# RUN apt - get -y install python - numpy
# The final line specifies your username and how to start your program .
# Replace abc123 with your real username and python / bin / abc123 . py
# with what is required to start your program .
CMD [" - username " , " abc123 " , " - submission " , " python / bin / abc123 . py "]
7
4. Build the Docker image as shown below. The base image pklehre/ec2024-lab2 will be
downloaded from Docker Hub
docker build . -t ec2024 - lab2 - abc123
5. Run the docker image to test that your program starts. A battery of test cases will be executed
to check your solution.
docker run ec2024 - lab2 - abc123
6. Once you are happy with your solution, compress the directory containing the Dockerfile as
a zip-file. The directory should contain the source code, the Dockerfile, and the PDF file
for Exercise 4 and 5. The name of the zip-file should be ec2024-lab2-abc123.zip (again,
replace the abc123 with your username).
Following the example above, the directory structure contained in the zip file should be as
follows:
ec2024-lab2-abc123/exercise.pdf
ec2024-lab2-abc123/abc123.py
ec2024-lab2-abc123/Dockerfile
Submissions which do not adhere to this directory structure will be rejected!
7. Submit the zip file ec2024-lab2-abc123.zip on Canvas.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫CSIE3310、代做c++/Python編程
  • 下一篇:AIST1110代做、Python編程設計代寫
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區(qū)
    昆明西山國家級風景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    国产精品精品软件男同| 亚洲成a人无码| 深夜福利网站在线观看| 一级黄色录像视频| 一级黄色片毛片| 成人免费毛片糖心| 岛国片在线免费观看| 色欲无码人妻久久精品| 熟妇高潮精品一区二区三区| 国产农村妇女精品一区| 9191在线视频| 国产激情在线免费观看| 中文字幕影音先锋| 人妻少妇无码精品视频区| 日本精品人妻无码77777| 欧美熟妇一区二区| 日本r级电影在线观看 | 亚洲成人精品在线播放| 魔女鞋交玉足榨精调教| 亚洲成人激情小说| 2017亚洲天堂| 国产特级黄色录像| 国产精品手机在线观看| 国产极品美女在线| 日本乱子伦xxxx| 亚洲自拍偷拍图| 国产麻豆xxxvideo实拍| 国产一级二级av| 神马午夜精品91| xxxx日本黄色| 奇米777第四色| 全程偷拍露脸中年夫妇| 亚洲欧美精品久久| 在线免费看黄视频| 无码人妻精品一区二区三应用大全| 国产极品国产极品| 99久久99久久精品免费| 91成人在线免费视频| 毛茸茸多毛bbb毛多视频| 999精品免费视频| 亚洲午夜久久久久久久久| 色欲无码人妻久久精品| 人妻少妇精品一区二区三区| 九九热久久免费视频| 91社区视频在线观看| 亚洲无人区码一码二码三码的含义| 国产激情在线免费观看| 色欲AV无码精品一区二区久久 | 欧美成人777| 精品一区在线观看视频| 亚洲欧美一区二区三区四区五区| 亚洲精品乱码久久久久久9色| 蜜桃av.com| 深夜福利网站在线观看| 天堂www中文在线资源| 国产污在线观看| 全黄一级裸体片| av在线播放中文字幕| 视频国产一区二区| 国偷自产av一区二区三区麻豆| 岛国av免费观看| 白白色免费视频| 欧美巨胸大乳hitomi| 人妻换人妻仑乱| 亚洲一级av无码毛片精品| 欧美做受喷浆在线观看| 亚洲第一综合网| 欧产日产国产v| 一级特级黄色片| 黄色激情小视频| 精品久久久久一区二区| 四虎国产精品成人免费入口| 五月婷婷综合激情网| 日本中文字幕精品| 精品人伦一区二区| 在线观看亚洲免费视频| 免费观看a级片| 国模无码视频一区| 中文字幕第69页| 亚洲精品在线视频免费观看| 久久久久亚洲av无码a片| 宇都宫紫苑在线播放| 色屁屁草草影院ccyy.com| 人妻精品久久久久中文字幕69| 久久中文字幕人妻| 国产精品熟女一区二区不卡| 熟女少妇一区二区三区| 麻豆免费在线观看视频| 先锋影音av在线| 蜜桃精品成人影片| 色婷婷狠狠18禁久久| 人与动物性xxxx| 亚洲av无码国产精品麻豆天美| 在线观看xxx| 中国1级黄色片| mm131丰满少妇人体欣赏图| 91人人澡人人爽| 日本泡妞xxxx免费视频软件| 久久久久久成人网| 国产真实乱人偷精品人妻| 国产 xxxx| 国产免费无码一区二区| 色婷婷粉嫩av| 久久噜噜色综合一区二区| 国产精品高清无码在线观看| av漫画在线观看| 无码人妻一区二区三区一| 精人妻一区二区三区| 女教师高潮黄又色视频| 放荡的美妇在线播放| 欧美成人短视频| 五月天av网站| 黑人无套内谢中国美女| 亚洲天堂小视频| fc2成人免费视频| 国产精品无码在线| 人妻精品久久久久中文字幕| 你懂得在线视频| 熟女少妇一区二区三区| 国产又黄又粗视频| 黄色录像免费观看| 特黄特色免费视频| 大乳护士喂奶hd| 制服 丝袜 综合 日韩 欧美| 久久久久久久久久久久| 欧美色图17p| avtt中文字幕| 内射中出日韩无国产剧情| 无码国产69精品久久久久同性| 一区二区黄色片| 免费在线观看黄色小视频| 极品久久久久久| 久久久久亚洲AV成人无码国产| 毛片网站免费观看| 久久久久久视频| 精品熟女一区二区三区| 欧美激情aaa| 毛片视频免费播放| 人妻互换一二三区激情视频| www.自拍偷拍| 秋霞午夜鲁丝一区二区| 欧美 变态 另类 人妖| 人妻熟人中文字幕一区二区| 成人信息集中地| 波多野结衣先锋影音| 国产美女高潮视频| 午夜诱惑痒痒网| 无码国产69精品久久久久同性| 91ts人妖另类精品系列| 美女日批在线观看| 欧美日韩国产黄色| 成人在线视频免费播放| 午夜剧场免费在线观看| 中文字幕乱视频| 26uuu成人网| 五月激情四射婷婷| 亚洲激情 欧美| 色诱av手机版| 日本午夜在线观看| 免费看黄色av| 强伦人妻一区二区三区| 稀缺呦国内精品呦| www深夜成人a√在线| 亚洲午夜久久久久久久国产| 国产精品久久AV无码| 精品无码av一区二区三区| 国精产品一区一区二区三区mba| 久久久久久久久久久久| 星空大象在线观看免费播放| 伊人av在线播放| 久久久久中文字幕亚洲精品| 神马久久精品综合| 手机免费观看av| 成年人视频软件| 亚洲v国产v欧美v久久久久久| 中文字幕在线视频播放| 中文在线字幕观看| 性xxxxxxxxx| 精品熟女一区二区三区| 日本69式三人交| 中文字幕在线观看网址| 手机看片日韩av| 亚洲性猛交xxxx乱大交| 青青草福利视频| 国产制服丝袜在线| 国产吞精囗交久久久| 无码人妻精品一区二区三区温州| 中文字幕99页| 人妻在线日韩免费视频| theav精尽人亡av| 久操视频免费看| 日本美女黄色一级片| 中国毛片直接看| 男人添女人荫蒂国产| 特级特黄刘亦菲aaa级| 性欧美丰满熟妇xxxx性久久久| 制服丝袜在线第一页| 你懂的在线观看网站| 国产精品扒开腿做爽爽| 日韩视频在线观看免费视频|