美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    国产毛片久久久久久久| 国内精品免费视频| 亚洲欧美在线不卡| 波兰性xxxxx极品hd| 美女又爽又黄免费| 制服下的诱惑暮生| 亚洲国产123| 91狠狠综合久久久| 亚洲一二三四五六区| 国产ts在线播放| 亚洲一区二区自偷自拍 | 在线xxxxx| 中文字幕1区2区| 亚洲欧美日韩中文字幕在线观看| 成人免费视频入口| 人妻一区二区视频| 五月婷婷婷婷婷| 国产精品综合激情| 欧美丰满熟妇bbbbbb| 青青草精品在线| 极品白嫩少妇无套内谢| 国产精品二区视频| 成人在线视频免费播放| 人妻少妇无码精品视频区| 国产真实乱人偷精品人妻| 国产精品久久免费观看| 欧美一级片在线视频| 日本在线视频播放| 亚洲天堂视频一区| 日韩精品一区二区亚洲av性色| 中文字幕欧美视频| 中文字幕一区二区三区人妻电影| 免费福利视频网站| 中文字幕av免费在线观看| 黄色在线免费播放| 亚洲色图第四色| 国产精品嫩草69影院| 欧美熟妇激情一区二区三区| 疯狂试爱三2浴室激情视频| 成年人小视频在线观看| 国产探花视频在线播放| 日本久久久久久久久久| 中文字幕欧美激情极品| 制服丝袜在线第一页| 99热在线观看精品| 中国毛片在线观看| 欧美一级大片免费看| 影音先锋制服丝袜| 国模无码视频一区| 四虎永久免费在线| а天堂中文在线资源| 爱爱的免费视频| 又色又爽又黄18网站| 女人黄色一级片| 亚洲 欧美 日韩在线| 久久久久久无码精品人妻一区二区| 一级黄色性视频| 中文字幕一区二区人妻在线不卡| 宇都宫紫苑在线播放| 日本黄色免费片| 少妇视频一区二区| 综合 欧美 亚洲日本| 亚洲人成人无码网www国产 | 精品国产一区在线| 人妻巨大乳一二三区| 亚洲成人生活片| 熟女少妇a性色生活片毛片| 少妇视频在线播放| 中文字幕在线免费看线人 | 在线观看一区二区三区四区| 伊人在线视频观看| 青青草精品在线| www.黄色网| 欧美图片自拍偷拍| a天堂视频在线观看| 国产精品九九视频| 日本japanese极品少妇| 一级特级黄色片| 中文字幕xxx| 老头老太做爰xxx视频| 人妻互换一区二区激情偷拍| 欧美日韩国产一二三区| 一区二区国产精品精华液| 久久r这里只有精品| 国产原创剧情av| 久操视频免费看| 可以直接看的黄色网址| 国产xxxx视频| www.黄色com| 99久久人妻精品免费二区| 国产手机在线观看| 91成人福利视频| 国产精品边吃奶边做爽| 成人午夜剧场视频网站| 国产日产精品一区二区三区的介绍| 在线免费日韩av| 日韩人妻无码精品综合区| 色偷偷www8888| 国产福利在线观看视频| 一二三四在线观看视频| 涩视频在线观看| 波多野结衣久久久久| 黄色在线观看av| 欧美国产日韩在线观看成人| 91成年人网站| 9.1在线观看免费| 日本黄色免费片| 国产熟妇搡bbbb搡bbbb| 91人妻一区二区三区| 欧美人与性囗牲恔配| xxxxxx黄色| 四虎永久免费观看| 波多野结衣在线网址| 黄色片网站免费| 欧洲一级黄色片| 任你躁av一区二区三区| 综合五月激情网| 婷婷国产成人精品视频| 先锋影音av在线| 人妻精品久久久久中文字幕| 欧美日韩一区二区区| 伊人在线视频观看| 黄色一级大片在线免费观看| 人人妻人人藻人人爽欧美一区| 亚洲成a人片在线www| 麻豆tv在线观看| 岛国精品一区二区三区| 久久aaaa片一区二区| 中文字幕亚洲欧美日韩| 国产又黄又粗又猛又爽的| 又色又爽的视频| 国产精品麻豆免费版现看视频| 国产精品成人一区二区三区电影毛片| 私密视频在线观看| 李丽珍裸体午夜理伦片| 永久免费未满蜜桃| 午夜剧场免费看| 欧美亚一区二区三区| 丰满圆润老女人hd| 51调教丨国产调教视频| 亚洲av成人片色在线观看高潮| 精品国产av色一区二区深夜久久 | 国产极品一区二区| 婷婷五月精品中文字幕| 亚洲av无码成人精品国产| 91视频在线网站| 精品伦精品一区二区三区视频密桃 | 国产精品成人无码免费| 播金莲一级淫片aaaaaaa| 亚洲天堂视频一区| 欧美三级黄色大片| 性农村xxxxx小树林| 欧美人妻一区二区三区| 中文字幕第24页| 日韩精品国产一区| 喷水视频在线观看| 嘿嘿视频在线观看| 亚洲v在线观看| ass极品国模人体欣赏| 美女搡bbb又爽又猛又黄www| 欧美成人另类视频| 中文字幕在线视频播放| 5566中文字幕| 精品无码人妻一区| 亚洲国产精品第一页| 免费看黄色av| 私密视频在线观看| 五月婷婷一区二区| 亚洲色图 激情小说| 国产视频久久久久久| 黄色一级片中国| 国产麻豆a毛片| 日韩丰满少妇无码内射| 毛茸茸free性熟hd| 日本妇女毛茸茸| www深夜成人a√在线| 毛片aaaaaa| 免费看污片的网站| 中日韩精品一区二区三区| 性高潮免费视频| 亚洲最大视频网| 女同性αv亚洲女同志| 欧美第一页在线观看| 国产三级黄色片| 亚洲图片第一页| 国产成人在线网址| 最近中文字幕在线mv视频在线 | 全黄一级裸体片| 国产精品无码一区二区三区免费| 污网站免费观看| 欧美夫妇交换xxx| av鲁丝一区鲁丝二区鲁丝三区| 国产a级片视频| 亚洲av成人无码一二三在线观看| 色诱av手机版| 天天躁日日躁狠狠躁av麻豆男男| 精品少妇人妻av一区二区三区| 国产一级免费片| 免费一级做a爰片久久毛片潮| 91国模少妇一区二区三区|