美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    韩国三级hd中文字幕| zjzjzjzjzj亚洲女人| 欧美精品欧美极品欧美激情| 91精彩刺激对白露脸偷拍| 波多野结衣一本| 成年人视频软件| 日韩人妻一区二区三区| 国产乱国产乱老熟300部视频| xxxx日本黄色| 国产手机在线观看| 亚洲欧美在线不卡| 荫蒂被男人添免费视频| 中国男女全黄大片| 亚洲精品无码久久久久久久| 91ts人妖另类精品系列| 国产一二三四五区| 中文字幕免费在线看线人动作大片| 中文字幕av观看| 老熟妇精品一区二区三区| 四季av综合网站| a级在线免费观看| 色偷偷www8888| 成人在线观看小视频| 国产裸体视频网站| 久久久无码人妻精品无码| 岛国av免费观看| 色婷婷av777| 91视频免费在观看| 男人晚上看的视频| 日韩成人短视频| youjizz.com国产| 日本精品在线观看视频| 久久精品亚洲a| 艳妇乳肉豪妇荡乳xxx| 久久精品—区二区三区舞蹈| ass极品国模人体欣赏| 69久久精品无码一区二区| 亚洲图片综合网| 91传媒免费观看| 日本一卡二卡在线| 成人欧美一区二区三区黑人一 | 在线观看xxx| 2一3sex性hd| 一级在线观看视频| 欧美一级大片免费看| 亚洲成人日韩在线| 国产ts在线观看| 东方av正在进入| 亚洲精品国产91| 朝桐光av一区二区三区| 免费看特级毛片| 国产精品综合激情| 在线免费观看黄色小视频| 中文字幕第六页| 少妇性l交大片7724com| 亚洲图片综合网| 337p日本欧洲亚洲大胆张筱雨| 少妇的滋味中文字幕bd| 人妻丰满熟妇av无码久久洗澡 | 成人免费无码大片a毛片| 99re6热在线精品视频| 欧美多人猛交狂配| 国产精九九网站漫画| 波多野结衣不卡视频| 中文幕无线码中文字蜜桃| 久久久久亚洲AV成人无码国产| 午夜剧场免费看| 无套白嫩进入乌克兰美女| 91高清免费观看| 手机看片国产精品| 欧美人与性动交α欧美精品| 四虎永久免费地址| 国产高潮流白浆| 中文字幕亚洲日本| 亚洲v在线观看| 亚洲国产无码精品| 精品人妻一区二区三区四区| 日韩欧美视频免费观看| 日韩国产第一页| 国产无套精品一区二区三区| 激情av中文字幕| 91成人破解版| 国产精品视频看看| 麻豆传媒在线看| 国产精品无码一区二区三区免费| 在线观看av中文字幕| 欧美大波大乳巨大乳| 手机在线中文字幕| 日韩网站在线播放| youjizz.com国产| 国产又粗又猛又爽又黄av| 国产午夜手机精彩视频| 动漫av在线免费观看| 欧美人妻一区二区三区| 色婷婷在线视频观看| 特级西西人体wwwww| www.涩涩爱| 黑人玩弄人妻一区二区三区| 国产全是老熟女太爽了| 四川一级毛毛片| 精品人妻无码一区| 潘金莲一级淫片aaaaaaa| 国产亚洲精品熟女国产成人| 久久久久久久久久影视| 懂色av蜜臀av粉嫩av永久| 无码任你躁久久久久久老妇| 国产真人做爰视频免费| 亚洲免费观看在线| 久久人妻无码aⅴ毛片a片app| 自拍视频一区二区| 18深夜在线观看免费视频| 青青青视频在线免费观看| 亚洲永久无码7777kkk| 老女人性淫交视频| 在线免费观看视频| 国产精品jizz| 精品国产免费久久久久久婷婷| 在线观看免费小视频| 中文字幕在线永久| 欧美熟妇精品一区二区| avove在线播放| 日韩成人毛片视频| 欧美成人短视频| 日韩一区二区三区四区视频| 性色av蜜臀av色欲av| 国产精品日日摸夜夜爽| 熟女人妻一区二区三区免费看| 香蕉久久久久久久| 成年人看的免费视频| 色一情一交一乱一区二区三区| 国产精品无码专区| 97人妻精品一区二区三区免费| 美女福利视频在线观看| 强制高潮抽搐sm调教高h| 三级黄色录像视频| 老女人性淫交视频| 影音先锋黄色资源| 精品成人无码一区二区三区| 精品人伦一区二区三电影| 91视频在线网站| 夫妇交换中文字幕| 特级片在线观看| 国产精品嫩草av| 亚洲av成人精品一区二区三区 | 中文字幕免费在线看线人动作大片| 日本黄色特级片| 女人黄色一级片| 色在线观看视频| 黄色激情在线观看| 国产在线观看h| 色婷婷在线视频观看| 亚洲国产精品自拍视频| 正在播放国产对白害羞| 女王人厕视频2ⅴk| 波多野结衣a v在线| 亚洲国产美女视频| www.久久国产| 性色av浪潮av| 97超碰在线免费观看| 久久精品一区二区三区四区五区| 在线观看xxx| 欧美人与禽zoz0善交| 最新日本中文字幕| 欧美福利第一页| 一出一进一爽一粗一大视频| 中文字幕电影av| 日本免费www| 亚洲熟妇一区二区三区| 午夜写真片福利电影网| 亚洲午夜精品久久久久久高潮| 精品国产aⅴ一区二区三区东京热| 欧美做受高潮6| 久久精品综合视频| 国产裸体视频网站| 国产黄a三级三级| 手机看片福利视频| 右手影院亚洲欧美| 欧美做受高潮中文字幕| 国产精品白嫩白嫩大学美女| 日本欧美一区二区三区不卡视频| 麻豆国产精品一区| 亚洲色图14p| 亚洲色图14p| 中文字幕乱码在线| www.啪啪.com| 成人做爰69片免费| 少妇极品熟妇人妻无码| 亚洲精品国产一区黑色丝袜| aa片在线观看视频在线播放| 337p日本欧洲亚洲大胆张筱雨| 国模大尺度视频| 高h视频免费观看| 免费欧美一级片| 国产69视频在线观看| 黑森林av导航| 香蕉网在线播放| 毛片aaaaaa| 国产精品丝袜一区二区| 超碰手机在线观看| 在线观看成人动漫|