美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    美女扒开腿免费视频_蜜桃传媒一区二区亚洲av_先锋影音av在线_少妇一级淫片免费放播放_日本泡妞xxxx免费视频软件_一色道久久88加勒比一_熟女少妇一区二区三区_老司机免费视频_潘金莲一级黄色片_精品国产精品国产精品_黑人巨大猛交丰满少妇
    久久久久久久久久久久久女过产乱| 亚洲制服丝袜在线播放| 中文字幕精品亚洲| 日本中文字幕有码| 亚洲自拍偷拍图| 污污免费在线观看| 日韩va亚洲va欧美va清高| 亚洲a v网站| 男生裸体视频网站| 玖草视频在线观看| 欧美黑人欧美精品刺激| 久草视频福利在线| 久久久高清视频| 亚洲精品成人无码毛片| 国产suv一区二区三区| 中日韩一级黄色片| 日韩成人黄色片| 亚洲天堂黄色片| 国产又粗又硬视频| 波多野结衣 在线| 精品人妻互换一区二区三区| 午夜av免费看| 特级西西www444人体聚色| 亚洲精品国产91| 欧美一区二区三区粗大| 免费欧美一级片| 秘密基地免费观看完整版中文| 中文字幕乱码一区| 国产毛片欧美毛片久久久| 天堂av免费在线| 人妻av一区二区三区| 91九色蝌蚪porny| 国产原创剧情av| 性猛交╳xxx乱大交| 欧美精品久久久久久久久46p| 久久免费看少妇高潮v片特黄| tube国产麻豆| 国产 xxxx| 精品国产aaa| 日本aⅴ在线观看| 日韩精品人妻中文字幕有码| 香港三日本8a三级少妇三级99| 香蕉视频黄色在线观看| jizzjizz日本少妇| 欧美在线一级片| 91麻豆免费视频网站| 亚洲综合网在线观看| 精品欧美一区二区久久久久| 91视频免费在线看| 男人舔女人下部高潮全视频| 成人免费无遮挡无码黄漫视频| 国产人与禽zoz0性伦| 亚洲精品乱码久久久久久不卡| 美国美女黄色片| 波多野结衣三级视频| 国产美女网站视频| 久久精品综合视频| 欧美丰满熟妇bbb久久久| 欧美成人久久久免费播放| 亚洲精品乱码久久久久久久| 香蕉视频免费网站| 波多野结衣家庭教师| 激情五月深爱五月| 黑人巨大精品欧美| 成人在线视频免费播放| 香蕉视频免费网站| 9.1在线观看免费| 欧美图片第一页| 日本护士做爰视频| 无套白嫩进入乌克兰美女| 日本成人免费在线观看| 97人妻精品一区二区免费| av无码一区二区三区| 伊人av在线播放| 天天爽夜夜爽视频| 国产一精品一aⅴ一免费| 香蕉视频1024| 91超薄肉色丝袜交足高跟凉鞋| 国产乱国产乱老熟300| 男人av资源站| 手机看片国产精品| 熟妇女人妻丰满少妇中文字幕| 一起草最新网址| 一区二区三区人妻| 手机免费看av片| 国产xxxxxxxxx| 中文字幕a在线观看| 免费人成又黄又爽又色| 日韩乱码人妻无码中文字幕久久| 久久成人激情视频| 久久成人小视频| 免费看的av网站| 亚洲少妇18p| 色偷偷男人天堂| 韩国三级在线看| 男生草女生视频| 一区二区三区四区五区| 国产精品一区二区入口九绯色| 亚洲午夜久久久久久久久红桃| 国产探花视频在线| 国产精品300页| 亚洲天堂黄色片| 久久亚洲AV无码专区成人国产| 成年人免费视频播放| 国产真人做爰视频免费| 国产一区二区三区在线视频观看| 波多野结衣三级视频| 91精品国自产在线| 天天躁日日躁狠狠躁免费麻豆| 九一在线免费观看| 国产精品果冻传媒| 久久无码专区国产精品s| 熟女少妇一区二区三区| 人妻丰满熟妇aⅴ无码| 在线免费看黄视频| 欧美狂猛xxxxx乱大交3| 一区二区三区伦理片| 久久久久人妻一区精品色| 久久久久久久久毛片| 特级西西人体4444xxxx| 国产精品99精品无码视亚| 久草福利在线观看| 白丝校花扒腿让我c| 亚洲天堂久久新| 日本少妇激三级做爰在线| 久久婷婷五月综合| 成年人的黄色片| 日本精品一二三| 久久久久亚洲av无码专区体验| 亚洲女优在线观看| 久操视频在线观看免费| 醉酒壮男gay强迫野外xx| 少妇饥渴放荡91麻豆| 国产成人av片| 在线观看免费视频国产| 欧美久久久久久久久久久| 亚洲精品一区二区三区在线播放| a天堂中文字幕| 永久免费毛片在线观看| 黄免费在线观看| 一级黄色片网址| 99久久99久久精品国产| 日本伦理一区二区三区| 特一级黄色录像| 少妇精品无码一区二区| 中文字幕在线观看网址| 醉酒壮男gay强迫野外xx| 国产18无套直看片| 波多野结衣三级视频| 日本50路肥熟bbw| 免费成人深夜夜行p站| caopeng视频| 一区二区三区四区免费| 久草福利资源在线| 国产97免费视频| 国产精品第七页| 国产精品伦子伦| www.自拍偷拍| 亚洲图片另类小说| 欧美做爰爽爽爽爽爽爽| 午夜69成人做爰视频| 久久人妻一区二区| 国产手机在线观看| 扒开伸进免费视频| 国产jjizz一区二区三区视频| 日本爱爱小视频| 黄色在线免费播放| 午夜国产小视频| 一级性生活毛片| 亚洲欧美激情一区二区三区| 国产伦理片在线观看| 伊人久久一区二区三区| 国产三级黄色片| 免费看污片网站| 农村末发育av片一区二区| 91n在线视频| 我和岳m愉情xxxⅹ视频| 国产大学生视频| 久久久久亚洲av成人网人人软件| 免费一级做a爰片久久毛片潮| 午夜精品福利在线视频| 色欲av无码一区二区三区| 欧美老女人bb| 天天色天天综合| 毛片aaaaaa| 91网站免费视频| 精品人妻无码一区二区三区| jjzz黄色片| 91精品又粗又猛又爽| 爱情岛论坛亚洲自拍| 国产成人无码aa精品一区| 国产第一页浮力| 国内毛片毛片毛片毛片毛片| 国产精品理论在线| 日本成人精品视频| 女人十八毛片嫩草av| 萌白酱视频在线| 国产麻豆视频在线观看| 亚洲国产日韩在线一区| 91香蕉视频网|